12,430 research outputs found

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach

    A conceptual design of an advanced 23 m diameter IACT of 50 tons for ground-based gamma-ray astronomy

    Full text link
    A conceptual design of an advanced Imaging Air Cherenkov Telescope with a 23 m diameter mirror and of 50 tons weight will be presented. A system photon detection efficiency of 15-17%, averaged over 300-600 nm, is aimed at to lower the threshold to 10-20 GeV. Prospects for a second generation camera with Geiger-mode Avalanche Photo Diodes will be discussed.Comment: 4 pages, 1 figure, to appear in the proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 200

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    The role of General Relativity in the evolution of Low Mass X-ray Binaries

    Get PDF
    We study the evolution of Low Mass X-ray Binaries (LMXBs) and of millisecond binary radio pulsars (MSPs), with numerical simulations that keep into account the evolution of the companion, of the binary system and of the neutron star. According to general relativity, when energy is released, the system loses gravitational mass. Moreover, the neutron star can collapse to a black hole if its mass exceeds a critical limit, that depends on the equation of state. These facts have some interesting consequences: 1) In a MSP the mass-energy is lost with a specific angular momentum that is smaller than the one of the system, resulting in a positive contribution to the orbital period derivative. If this contribution is dominant and can be measured, we can extract information about the moment of inertia of the neutron star, since the energy loss rate depends on it. Such a measurement can therefore help to put constraints on the equation of state of ultradense matter. 2) In LMXBs below the bifurcation period (\sim 18 h), the neutron star survives the period gap only if its mass is smaller than the maximum non-rotating mass when the companion becomes fully convective and accretion pauses. Therefore short period (P < 2h) millisecond X-ray pulsar like SAX J1808.4-3658 can be formed only if either a large part of the accreting matter has been ejected from the system, or the equation of state of ultradense matter is very stiff. 3) In Low Mass X-ray binaries above the bifurcation period, the mass-energy loss lowers the mass transfer rate. As side effect, the inner core of the companion star becomes 1% bigger than in a system with a non-collapsed primary. Due to this difference, the final orbital period of the system becomes 20% larger than what is obtained if the mass-energy loss effect is not taken into account.Comment: 7 pages, 3 figures, accepted by the MNRA

    Tagging single muons and other long-flying relativistic charged particles by ultra-fast timing in air Cherenkov telescopes

    Get PDF
    Atmospheric air Cherenkov telescopes are successfully used for ground-based, very high-energy (VHE) gamma ray astronomy. Triggers from the so-called single muon and other long-flying relativistic charged particle events are an unwanted background for the Cherenkov telescope. Because of low rate at TeV energies the muon background is unimportant. It is much more intense for telescopes with high photon sensitivity and low energy threshold. Below a few hundred GeV energy, the so-called muon background becomes so intense, that it can deteriorate the sensitivity of telescopes (the so-called muon-wall problem). From general considerations it can be anticipated that the signature of these particles should be a light pulse with a narrow time structure. In fact, simulations show that the pulses from muons have a very narrow time profile that is well below the time resolutions of nearly all currently operating telescopes. In this report we elaborate on the time profile of Cherenkov light from the so-called single muons and show that a telescope with ultra-fast time response can open a new dimension allowing one to tag and to reject those events.Comment: Accepted by Astroparticle Physic

    The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes

    Get PDF
    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show ∼100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of ∼0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps

    The Active Mirror Control of the MAGIC Telescope

    Full text link
    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.Comment: Contribution to the 30th ICRC, Merida, Mexico, July 2007 on behalf of the MAGIC Collaboratio

    On the dependence of the leak-rate of seals on the skewness of the surface height probability distribution

    Full text link
    Seals are extremely useful devices to prevent fluid leakage. We present experimental result which show that the leak-rate of seals depend sensitively on the skewness in the height probability distribution. The experimental data are analyzed using the critical-junction theory. We show that using the top-power spectrum result in good agreement between theory and experiment.Comment: 5 pages, 9 figure

    Development of aluminum alloy compounds for electroluminescent light sources

    Get PDF
    Aluminum alloy compounds as wide band gap semiconductors for electroluminescent light source
    • …
    corecore